
Measuring Progress in Premo Order
Verification

Curtis Ober*
Exploratory Simulation Technology

Ryan Bond
Aerosciences

Patrick Knupp
Optimization and Uncertainty Estimation

7th World Congress on Computational Mechanics
July 16 – 22, 2006, Los Angeles, California

Minisymposium: Accomplishments and Challenges in Verification & Validation

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Motivation for a Practical Study

• Create an example on how to implement theory
– This is an example, not a recipe.
– Different codes may follow different processes
– Provide some lessons learned

• Some other benefits
– Identification of weaknesses and practical issues with theory
– Progress measures for Premo verification
– New order-of-accuracy tests (OATs) for Premo

• Premo was chosen because of its verification “maturity”
– Roy, Smith, Ober, & Nelson, 2002-2004

steady MMS, 2D, Cartesian meshes, Euler & Navier-Stokes equations
– Bond, Ober, & Knupp, 2004-present

steady MMS, 3D, curvilinear hex meshes, Euler, Navier-Stokes, & RANS
equations, boundary conditions

– Dimiduk & Ober, 2005
unsteady MES, various temporal integration schemes

Scope of Progress Study

• Premo 1.3β - compressible fluid dynamics software
– Static code (October 2005)
– 326 files
– 3600+ functions
– 182 input keywords
– 83,000+ executable lines
– 230,000+ total lines

• Code capabilities excluded from the study
– Deprecated and emerging capabilities
– SIERRA framework or third-party libraries (TPLs)
– Not all combinations of code capabilities

• Focused on (outline)
– Construction of Premo order-verification test-suite (OVTS)
– Calculating the progress and fitness measures for Premo

Statistics limited to Premo

OVTS Construction

OVTS construction is iterative:
1) Start with initial set of OATs.
2) Evaluate OVTS for coverage

holes/gaps in OV-domain.
3) Introduce new OATs or change

existing OATs to fill coverage
holes/gaps.

4) Continue testing for completeness
and filling holes until completeness
requirements are met.

Does not result in a unique OVTS.

IC dependent
evaluator dependent

sequence dependent &
granularity dependent

OVTS Construction - Step 1)

1) Start with initial set of OATs.
– OATs included in OVTS

• 9 steady, MMS tests for spatial order verification of
interior-equation sets and BCs

• 7 convecting-vortex tests (unsteady, inviscid, exact
solutions) tests used for temporal-integration verification

– OATs excluded from OVTS
• Steady, 2D, Cartesian meshes, Euler and Navier-Stokes

equations
• Reason: less general and covered redundant functionality
• Still useful; provides fine-grained coverage

OVTS Construction - Step 2)

2) Evaluate OVTS for coverage holes/gaps in OV-domain.
– Evaluators for identifying OVTS coverage holes

• Expert knowledge - most general way of finding holes

• Function coverage - based on code member functions

• Keyword coverage - based on input parameter names, flag names,…

• Line coverage - not well suited for order-of-accuracy analysis

– Some holes could only be identified by one evaluator
– Completeness requirement is the most difficult part

• Need a mapping from governing equations/code capabilities to
OV-domain/lines of code

• There is still a need to develop methods to better facilitate
code-coverage evaluation.

OVTS Construction - Step 2)

Evaluators Pros Cons

Expert
knowledge*

• Best for initial design
• Catches higher concepts

– Combinations of capabilities
– Are OATs general?

• Not automated
• Requires intimate knowledge of
software and governing equation

Function
coverage*

• Traces code execution
• Automated

• Tested in most general way?
• Misses finer-grained branches

Keyword
coverage*

• User-oriented measure
• Automated

• Tested in most general way?
• Does not trace code execution

Line
coverage

• Finds all untested lines
• Traces code execution
• Automated

• Finds all untested lines
• Requires expert knowledge

– Lines are in the OV-domain
– Connection between code capability
and lines of code

* Need a variety of evaluators to thoroughly identify holes.

OVTS Construction - Step 3)

3) Introduce new OATs or change existing OATs to fill
coverage holes/gaps.
– Types of tests

• Exact solutions can be used where they exist.
– Example: Convecting vortex OATs tests temporal terms

• Manufactured solutions can be used to test features in
the most general way.

– Example: All spatial derivatives are generally tested
• Unit tests can be used to evaluate modular components

– Example: viscosity models, μ=μ(T)
• Others

– End-to-end functional tests

Can include non-OATs

OVTS Construction - Step 3)

3) Introduce new OATs or change existing OATs to fill
coverage holes/gaps.
– How you add/change OATs determines the type of OVTS

• Many OATs with few unique code capabilities leads to a
fine-grained OVTS

– Isolate coding mistakes and algorithmic weaknesses easier
• Few OATs with many unique code capabilities leads to a

coarse-grained OVTS
– Fewer tests and less cost to run them

– Obvious examples
• Copying and modifying an existing OAT creates redundancy

→ fine-grained OVTS
• Replacing an OAT with an OAT which has a superset of

capabilities reduces redundancy → coarse-grained OVTS
– Granularity affects progress and fitness measure

OVTS Construction - Step 4)

4) Continue testing for completeness and filling holes
until completeness requirements are met.

– Use coverage evaluators to assess completeness
– If one can only construct redundant OATs, then

finished.
– Again, we did not try to create all combinations

OVTS Construction - Step 4)

4) Continue testing for completeness and filling holes
until completeness requirements are met.

– 52 total OATs in current Premo OVTS
• 9 convecting vortex tests
• 8 unsteady exact solution tests for limiter options
• 35 MMS tests

– Not all OATs are finished, but all are defined.
• Required inputs are defined so that coverage

evaluators can be used.
• Full verification runs will be completed later (e.g., mesh

refinement)
– Once we have the OATs, we can prioritize them.

Progress Measures

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ja
n-0

4
Apr-

04
Ju

l-0
4

Oct-
04

Ja
n-0

5
Apr-

05
Ju

l-0
5

Oct-
05

Ja
n-0

6
Apr-

06

equally-weighted
status measure
unequally-weighted
status measure
pass/fail status
measure

π ,1P =

1

N

s(nl)

s(
5l)n=1

N

∑

Level Status Equally-
weighted

Unequally-
weighted

Pass/
Fail

Number
of OATs

0 23

15

5

0

0

9

1

2

3

4

0 incomplete

5

0

0

0

0

0

1

0

1 ready 3

2 numerical solutions exist 5

3 all solutions asymptotic 10

4 all orders verified 12

5 OAT results reproducible 20

Status-Based
Progress Measure
indicates what fraction of
the OATs are passing or
are “partially” passing.

Process point-of-view

• Cheap to compute
these measures

Progress Measures

Pπ ,3 =
functions covered by passing OATs

functions covered by OVTS

Pπ ,4 =
keywords covered by passing OATs

keywords covered by OVTS

Coverage-Based
Progress Measure
indicates what fraction of
the functions/keywords
are passing/verified.

• Pπ,1 ~ 20% and Pπ,3 ~ Pπ,4 ~ 70%
– Tests cover a large fraction of functions and large overlaps exist between

tests. ⇒ principle of diminishing returns
• Coverage-based progress measures still lack knowledge if OATs are

general tests of functionality.
– Thus may falsely inflate or deflate the significance of some tests.

• Trends are important, do not read too much into the numbers

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ja
n-0

4
Apr-

04
Ju

l-0
4

Oct-
04

Ja
n-0

5
Apr-

05
Ju

l-0
5

Oct-
05

Ja
n-0

6
Apr-

06

based on
keyword
coverage
based on
function
coverage

Fitness Measures

Fπ ,1 = wnrn
n=1

N

∑
Function-based weighting

Pass/fail status

Number of relevant functions
Fitness measure
indicates what fraction
of the capabilities for a
given application has
been verified.

Usage point-of-view

Function-Weighted Fitness Measure

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ja
n-0

4
Apr-

04
Ju

l-0
4

Oct-
04

Ja
n-0

5
Apr-

05
Ju

l-0
5

Oct-
05

Ja
n-0

6
Apr-

06
Euler 2D Blunt Wedge

Navier-Stokes 2D Blunt
Wedge

Fitness Measures

• Not at a 100% for these
applications, but we have
known OATs to help get
there.

• What values are other
codes getting for these
fitness measures?

 Keyword-Weighted Fitness Measure

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ja
n-0

4
Apr-

04
Ju

l-0
4

Oct-
04

Ja
n-0

5
Apr-

05
Ju

l-0
5

Oct-
05

Ja
n-0

6
Apr-

06

Euler 2D Blunt Wedge

SARANS Mach 3 Flat
Plate

Navier-Stokes 2D Blunt
Wedge

SARANS RAE 2822
Airfoil, modified source
terms
SARANS RAE 2822
Airfoil, standard source
terms

Fπ ,1 = wnrn
n=1

N

∑
Keyword-based weighting

Pass/fail status

Number of relevant keywords

Conclusions

• Need a variety of evaluators to identify holes.
• OVTS will mostly be comprised of MES and MMS (OATs), but

other non-OATs can be useful.
• Granularity of OVTS affects

– progress and fitness measures
– OVTS size and runtime
– diagnostic effectiveness

• A constructed OVTS allows prioritization of OATs to be completed.
• Progress and fitness trends and relative values can be tracked, but

do not read too much into the numbers.
• Computing progress and fitness measure is cheap, therefore

include several measures.
• Premo not at 100%

– But we know the OATs to get there
– How does this compare with other codes?

Acknowledgments

The authors would like to thank
• Jeff Fisher for his assistance in setting up some
tests and modifying Premo and the SNTools to
support needed coverage calculations.
• Alfred Lorber for his help with his function
coverage evaluator.
• Tolulope Okusanya for his help with his keyword
coverage evaluator.

Backup Slides

Measuring Progress in Premo
Order Verification

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

14 June, 2006

Ryan Bond, 1515
Curt Ober, 1433
Pat Knupp, 1411

• Introduction
• Construction of Order Verification Test Suite (OVTS)
• Premo’s OVTS
• Premo’s measure history with this OVTS
• Conclusions
• Open Issues
• Acknowledgments

Outline

Definitions

• Order-of-Accuracy Test (OAT): a test intended to
measure the order of accuracy (OA) for a given set of
code inputs

• Order Verification Test Suite (OVTS): a collection of
OATs associated with a particular version of a code

• Order Verification Exercise (OVE): the process of
setting up & running an OAT, calculating the OA, and
documenting the results

• Discretization Algorithm: any calculation with an
associated OA or calculation which, if performed
incorrectly, would adversely affect the observed OA

History of Premo Order Verification

• Premo was chosen because of the maturity of its verification
efforts.

• Roy, Smith, Ober, & Nelson, 2002-2004
steady MMS, 2D, Cartesian meshes, Euler & Navier-Stokes equations

• Bond, Ober, & Knupp, 2004-present
steady MMS, 3D, curvilinear hex meshes, Euler, Navier-Stokes, &

RANS equations, boundary conditions
• Dimiduk & Ober, 2005

unsteady MES, various temporal integration schemes
• To date, several coding mistakes have been found and

corrected, other unresolved issues, probably related to
algorithmic weaknesses, have been identified.

Motivation for Premo Study

• We need to apply the theory to a production code to
identify weaknesses, gaps, and practical issues.

• We need to develop and test different ways of
evaluating OVTS completeness.

• We need to establish a database of results for further
investigation on progress and order verification.

• Create an example for how to implement progress
measure theory, different codes may follow slightly
different pocesses – an example, not a recipe.

Scope of Premo Progress Study

• Looking at order-verification versus other types of
code verification.

• Focus is on test development and demonstration
versus regression testing.

• version 1.3 of Premo (static code & OVTS)
• The scope of code capabilities tested was limited to

allow useful results to be obtained in FY06:
– no deprecated or emerging capabilities
– no attempt to cover Sierra or TPL option spaces

Process for Constructing OVTS

OVTS construction is iterative:
1) Start with some incomplete suite of

OATs
2) Evaluate this initial test suite for

coverage holes.
3) Introduce new OATs or change

existing OATs to fill coverage
holes.

4) Continue testing for completeness
and filling holes until completeness
requirements are met

Does not result in a unique OVTS.

IC dependent

evaluator dependent

sequence dependent &
granularity dependent

Ways of Identifying
OVTS Coverage Gaps

• Expert knowledge: start from a comprehensive list of
discretization algorithms; then determine whether or not
they are all covered in the most general fashion.

• Function coverage: identify a set of functions which
should be touched by at least one OAT in the OVTS; then
use function tracing to evaluate completeness.

• Keyword coverage: identify a set of input file keywords
that should be exercised; then analyze the code input for
each OAT to evaluate completeness.

• Line coverage: better suited for other types of testing
than OA analysis.

These coverage evaluators identify gaps in particular
equations, auxiliary equations, numerical methods, shape
functions, etc. We have not yet focused on combinations.

Function Coverage Evaluator

• Start with all ‘apply’ and ‘execute’ functions.
• Eliminate functions associated with deprecated or

emerging capabilities.
• Run all tests in OVTS with function tracing.
• Compile statistics to see how many OATs call each

function.
• Functions not called by any OATs represent holes

(but other holes may still exist).

Keyword Coverage Evaluator

• Identify valid input file keywords.
• Filter out keywords valid for Sierra & TPL’s but not

related to Premo’s order verification.
• For keywords associated with enumerated options

(e.g., flux functions), make sure each option is
covered.

• For keywords associated with floating point values
(e.g., Prandtl number), we just make sure at least
one test includes the keyword.

• Evaluate OVTS by parsing input files for keywords.
• Missing keywords or associated options represent

holes (but other holes may still exist).

Pros & Cons of Different
OVTS Completeness Evaluators

Method Pros Cons

Expert knowledge

•best for initial design
•catches higher
concepts missed by
automated methods

•not automated
•requires adequate
documentation

Function
coverage

•traces code
execution
•automated

•does not ensure
generality
•misses finer grained
branches

Input coverage

•user-oriented
measure
•automated

•does not ensure
generality
•does not trace code
execution

Certain coverage holes are identified by only 1 of the 3.

Non-uniqueness: Granularity

• A fine-grained OVTS has many OATs, each with few
unique coverage aspects.

• A coarse-grained OVTS has few OATs, each with
many unique coverage aspects.

• Granularity affects progress measure, test suite size,
and diagnostic effectiveness:
– A fine-grained OVTS is better for showing incremental

progress and provides easier isolation of coding
mistakes and algorithmic weaknesses.

– A coarse-grained OVTS requires fewer tests and less
effort to run them (both for initial and sustainable
verification).

• A continuous spectrum exists between two extremes.

Example Coarse/Fine Decisions

• Initially, all convecting vortex tests (used for temporal
integration verification) used the same option for IC
enforcement.

• Two new tests were added by copying and modifying
existing tests.

• This completed coverage of IC enforcement options,
but it also rendered a couple of existing tests
redundant.

• These redundant tests were left in the OVTS, and
since they have been passed, their presence
increases the progress measures.

Example Coarse/Fine Decisions (2)

• An MMS test of the Riemann invariant outflow BC
has been executed for fully supersonic conditions,
and it passes.

• This test is a less general case of the test of the
same BC for mixed subsonic/supersonic conditions,
which does not demonstrate asymptotic behavior.

• The fully supersonic case was never added to the
OVTS.

• The omission of the fully supersonic case from the
OVTS decreases the progress measures.

Other OVTS Design Considerations

• In general, exact solutions should be used where
they exist, and manufactured solutions should be
used to achieve completeness through generality.

• Portions of the space may be covered with unit tests
rather than OATs, provided that potential places for
coding mistakes and algorithmic weaknesses are not
overlooked.

• Some things that meet this criterion may be more
conveniently covered by OATs.

• As a side effect, OATs may test things not associated
with discretization algorithms, so this ‘bonus’
coverage of the OVTS could shrink the space for
other types of testing.

Example OA/Unit Test Decision

• Viscosity, μ, can be calculated by one of four
methods: constant, Sutherland’s law, power law, and
Keyes’ law.

• One function exists with case statements for each
option.

• Three options are functions of temperature, T, and
also a function of space, since T = T(x,y,z).

• Terms exist in the Navier-Stokes equations which
include spatial derivatives of viscosity, for example:

()x
u

x ∂
∂

∂
∂ μ2

Example OAT/Unit Test Decision (2)

• We need the most general functional dependence for
μ to test a discretization algorithm for this term.

• Any one of the three options that are functions of T
will suffice.

• The other options can be tested with a unit test that
calls the function for μ and compares its result with
the expected result over a range of T for each option.

• Some OATs within the OVTS use Sutherland’s law;
other options for μ are tested with unit tests.

Premo OVTS for This Study

• 16 initial OATs
– 7 convecting vortex tests (unsteady, inviscid, exact

solutions) tests used for temporal integration
verification

– 9 steady, MMS tests for spatial order verification of
interior equation sets and BC’s

• 52 total OATs in current OVTS
– 9 convecting vortex tests
– 8 unsteady exact solution tests for limiter options
– 35 MMS tests

• If done thoroughly, many more tests will be in the
final OVTS than in the initial OVTS.

Premo OVTS for This Study (2)

• Old order verification process was
– create test
– run test
– document test
– move to next test.

• New process involves conceiving a complete OVTS
at the beginning, then filling in details and running
later.

• The granularity of the OVTS evolved over time to
meet various needs.

Ways of Calculating Status/Progress

1. Each test is assigned a status level, s, valued 0-5,
and the overall measure is

2. For a weighted measure, each status level is given
a different weight.

3. A pass/fail measure is constructed by only giving a
non-zero weight to level 5 (i.e., no partial credit).

∑
=

=
N

n

n

s
sP

1 max
1

OAT Status Levels

Level Status Score

0 incomplete 0 / 20

1 ready 3 / 20

2 numerical
solutions exist 5 / 20

3 all solutions
asymptotic 10 / 20

4 all orders verified 12 / 20

5 OAT results
reproducible 20 / 20

Status over Past 2.5 Years

Status measures vs. time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Ja
n-0

4
Apr-

04
Ju

l-0
4

Oct-
04

Ja
n-0

5
Apr-

05
Ju

l-0
5

Oct-
05

Ja
n-0

6
Apr-

06

time

st
at

us
 m

ea
su

re equally-weighted status
measure
unequally-weighted
status measure
pass/fail status
measure

Coverage-based Progress Measures

• Status and progress measures evaluate progress on
a test-by-test basis, and thus are a good indicator of
the productivity of verification efforts over time.

• Since significant overlap exists between different
tests, the fraction of tests passed and fraction of OV
domain verified are not the same.

• Weighting the progress measure by one of the
coverage measures creates a good indicator of the
fraction of OV domain verified.

• For better or worse, coverage-based measures
illustrate the principle of diminishing marginal utility.

Coverage-based Progress Measures (2)

OVTS full by covered lines
sOAT' passed by covered lines

OVTS full by covered keywords
sOAT' passed by covered keywords

OVTS full by covered functions
sOAT' passed by covered functions

5

4

3

=

=

=

P

P

P

These are only useful for a ‘complete’ OVTS, i.e., one that
covers all the functions, options, and lines in the OV domain.

Coverage-based Progress Measures (3)

Coverage-based progress measure vs. time

0

0.2

0.4

0.6

0.8

1

Ja
n-0

4
Apr-

04
Ju

l-0
4

Oct-
04

Ja
n-0

5
Apr-

05
Ju

l-0
5

Oct-
05

Ja
n-0

6
Apr-

06

time

co
ve

ra
ge

-b
as

ed
 p

ro
gr

es
s

m
ea

su
re

based on keyword
coverage
based on function
coverage

Primary Shortcoming of
Coverage-based Measures

Do not take into account the expert knowledge
measure of completeness, and thus may falsely
inflate or deflate the significance of some tests.

example:
– An exact solution test uses a particular BC, but not in

the most general way.
– It is followed by a manufactured solution designed to

test the BC generally.
– The automated coverage metrics may miss this

distinction, thus showing too large of a jump after the
MES test and too small of a jump after the MMS test.

Fitness Measure

• The fitness measure is an indication of a code’s
verification status relative to a particular application.

• It asks what fraction of the capabilities needed for a
specific application has been verified.

• This is difficult to determine accurately for a coarse-
grained OVTS, since many of its OATs may exercise
features not relevant to the application.

• A high-priority fitness measure calculation might
require refinement of the OVTS.

• Whereas the progress measure looks at things from
a developer’s point-of-view, the fitness measure
looks at things from a user’s point-of-view.

Impact of Granularity on Fitness Measure

fine-grained OVTS coarse-grained OVTS

full OV domain

subspace defined by application

OATs needed for coverage

coding mistake (bug)

algorithmic weakness

Fitness measure is useful for any OVTS, it just may be
more accurate for a fine-grained OVTS.

Progress Measure and
Corresponding Fitness Measure

()

∑∑

∑∑

= =

= =

=

=

⎪
⎩

⎪
⎨

⎧

<
>=

=

=

N

n

J

j
jnjn

N

n

J

j
jn

p
q

rwF

rP

qp
qp

p
r

p

q

1 1
,,

1 1
,2

2
1

0 and knownnot is if0
0 & knownnot is if

known is if,0max

accuracy oforder formal

accuracyoforder observed

weight indicating
relevance to application

Ways of Determining Weights
for Fitness Measure

• Find smallest subset of the OVTS which fully covers
the application
– requires optimization (manual or automated)
– equal weights for OATs that are members of the

subset, zero weights for non-members
– most similar to status (P1) and progress (P2) measures

• Use coverage evaluators to automatically generate
weights for all of the OATs within the OVTS
– measures what fraction of functions, keywords, or lines

needed for application are covered by passed OATs
– more similar to coverage-based progress measures

(P3, P4, & P5)

Minimal OVTS Subset Needed for
Fitness Measure: Laminar Blunt Wedge

OAT status level r
MMS interior Navier-Stokes 5 1

MMS outflow BC, transonic conditions 2 0

MMS outflow BC, stagnation conditions 2 0

MMS farfield BC 0 0
MMS Dirichlet, residual 1 0

MMS adiabatic no-slip, residual 2 0

convecting vortex, uniform IC 1 0
MMS Dirichlet, strong 1 0

MMS adiabatic no-slip, strong 1 0

not critical for steady problem

Fitness Measures for
Several Example Applications

Fitness measures vs. time
keyword-coverage-weighted

0
0.2
0.4
0.6
0.8

1

Ja
n-0

4
Apr-

04
Ju

l-0
4

Oct-
04

Ja
n-0

5
Apr-

05
Ju

l-0
5

Oct-
05

Ja
n-0

6
Apr-

06

time

fit
ne

ss
 m

ea
su

re

Euler 2D Blunt Wedge

SARANS Mach 3 Flat
Plate

Navier-Stokes 2D Blunt
Wedge

SARANS RAE 2822
Airfoil, modified source
terms
SARANS RAE 2822
Airfoil, standard source
terms

Fitness Measures for
Several Example Applications (2)

Fitness measures vs. time
function-coverage-weighted

0
0.2
0.4
0.6
0.8

1

Ja
n-0

4
Apr-

04
Ju

l-0
4

Oct-
04

Ja
n-0

5
Apr-

05
Ju

l-0
5

Oct-
05

Ja
n-0

6
Apr-

06

time

fit
ne

ss
 m

ea
su

re

Euler 2D Blunt Wedge

Navier-Stokes 2D Blunt
Wedge

Conclusions

• Evaluating OVTS completeness requires several
approaches.

• Automated approaches can be used to compliment
expert knowledge.

• The function and keyword coverage methods work
reasonably well, but still need some fine tuning.

• Function coverage tends to inflate coverage-based
progress measures less than keyword coverage; line
coverage may be even more conservative.

• Fitness measures may be even more sensitive to
OVTS granularity (and other design decisions) than
status or progress measures.

Conclusions (2)

• Sometimes, simply setting up OATs and evaluating
them for coverage will uncover coding mistakes.
– Tests which should have covered certain functions did

not, as a result of a missing function call.
– Tests set up to cover auxiliary variable calculations (for

output) threw exceptions in debug mode.
• The granularity of the OVTS can be refactored

between one code version and another.
– Tests may be removed (coarser granularity) as tests

which duplicate their coverage pass.
– Tests may be added (finer granularity) to more

accurately calculate fitness measures for certain
applications.

– Tests may be added to isolate problems.

Conclusions (3)

• We should have retained some previously run and
passed inviscid OATs in the OVTS in order to
– increase granularity and get more accurate fitness

measures for inviscid problems
– better represent progress in the earlier stages (late

2004 through early 2005).
• Progress can be measured over time, even if this

measure is highly OVTS dependent.
• This study formalized the OVTS and has created an

associated database for future investigations.
• The study identified some important practical issues

that the theory did not cover.

Conclusions (4)

• This study has laid the foundation for measuring
progress in OV for Premo and will (or at least should)
help guide and prioritize future OV efforts.

• Although we have open issues remaining, this
example is sufficient for other code groups to
consider emulating.

Open Issues

• Transient code and OVTS versus static code &
OVTS.

• OVTS granularity issues need to be examined
further.

• Convergence of coverage evaluators to produce
consistent mapping between capabilities and pieces
of code.

• Development of tools to automate coverage
evaluatoins and progress/fitness measure
calculations.

• Generalization of those tools for other codes.

Acknowledgments

The authors would like to thank Jeff Fisher (1541) for
his assistance in setting up some tests and modifying
Premo and the SNTools to support needed coverage
calculations.

	Motivation for a Practical Study
	Scope of Progress Study
	OVTS Construction
	OVTS Construction - Step 1)
	OVTS Construction - Step 2)
	OVTS Construction - Step 2)
	OVTS Construction - Step 3)
	OVTS Construction - Step 3)
	OVTS Construction - Step 4)
	OVTS Construction - Step 4)
	Progress Measures
	Progress Measures
	Fitness Measures
	Fitness Measures
	Conclusions
	Acknowledgments
	Backup Slides
	Measuring Progress in Premo Order Verification
	Outline
	Definitions
	History of Premo Order Verification
	Motivation for Premo Study
	Scope of Premo Progress Study
	Process for Constructing OVTS
	Ways of Identifying�OVTS Coverage Gaps
	Function Coverage Evaluator
	Keyword Coverage Evaluator
	Pros & Cons of Different�OVTS Completeness Evaluators
	Non-uniqueness: Granularity
	Example Coarse/Fine Decisions
	Example Coarse/Fine Decisions (2)
	Other OVTS Design Considerations
	Example OA/Unit Test Decision
	Example OAT/Unit Test Decision (2)
	Premo OVTS for This Study
	Premo OVTS for This Study (2)
	Ways of Calculating Status/Progress
	OAT Status Levels
	Status over Past 2.5 Years
	Coverage-based Progress Measures
	Coverage-based Progress Measures (2)
	Coverage-based Progress Measures (3)
	Primary Shortcoming of�Coverage-based Measures
	Fitness Measure
	Impact of Granularity on Fitness Measure
	Progress Measure and�Corresponding Fitness Measure
	Ways of Determining Weights�for Fitness Measure
	Minimal OVTS Subset Needed for�Fitness Measure: Laminar Blunt Wedge
	Fitness Measures for�Several Example Applications
	Fitness Measures for�Several Example Applications (2)
	Conclusions
	Conclusions (2)
	Conclusions (3)
	Conclusions (4)
	Open Issues
	Acknowledgments

